Generative deep learning : teaching machines to paint, write, compose, and play

"Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impr...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Foster, David (Autor)
Další autoři: Friston, K. J. (Karl J.), 1959- (Autor úvodu atd.)
Médium: Kniha
Jazyk:angličtina
Vydáno: Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo : O'Reilly, 2023
Žánr/forma:příručky
ISBN:978-1-098-13418-1
Témata:
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
Obálka
LEADER 02903cam a2200421 i 4500
001 001880524
003 CZ PrSTK
005 20230926090440.0
008 230601s2023 cc a f f 001 0 eng d
020 |a 978-1-098-13418-1  |q (brožováno) 
040 |a Uk  |b cze  |c Uk  |d Uk  |d ABA013  |e rda 
044 |a cc  |a xxu  |a xxk  |a ja 
050 4 |a Q325.73  |b .F67 2023 
072 7 |a 004.8  |x Umělá inteligence  |2 Konspekt  |9 23 
080 |a 004.42  |2 MRF 
080 |a 004.8.032.26  |2 MRF 
080 |a 004.85  |2 MRF 
080 |a 004.852  |2 MRF 
080 |a (035)  |2 MRF 
100 1 |a Foster, David  |4 aut 
245 1 0 |a Generative deep learning :  |b teaching machines to paint, write, compose, and play /  |c David Foster ; foreword by Karl Friston 
250 |a Second edition 
264 1 |a Beijing ;  |a Boston ;  |a Farnham ;  |a Sebastopol ;  |a Tokyo :  |b O'Reilly,  |c 2023 
300 |a xxvi, 426 stran :  |b ilustrace ;  |c 24 cm 
336 |a text  |b txt  |2 rdacontent 
337 |a bez média  |b n  |2 rdamedia 
338 |a svazek  |b nc  |2 rdacarrier 
504 |a Obsahuje bibliografie a rejstřík 
520 |a "Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models, and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos ; Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation ; Create recurrent generative models for text generation and learn how to improve the models using attention ; Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting ; Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN."--Nakladatelská anotace 
650 0 7 |a programování  |x vt  |7 psh12467  |2 psh 
650 0 7 |a neuronové sítě  |x vt  |7 psh12333  |2 psh 
650 0 7 |a učící se systémy  |x vt  |7 psh12517  |2 psh 
650 0 7 |a hluboké učení  |x vt  |7 psh14168  |2 psh 
650 0 7 |a strojové učení  |7 ph126143  |2 czenas 
655 7 |a příručky  |7 fd133209  |2 czenas 
700 1 |a Friston, K. J.  |q (Karl J.),  |d 1959-  |7 mub2015862563  |4 aui 
910 |a ABA013  |b A 59558 
996 |a STK  |b 2660518306  |c 1542/2023  |d 20230921  |f 1074.00  |g A 59558  |v Q325 .73 .F67 2023  |l 6.NP, regál 6C/124  |t 03  |0 K