Generative deep learning : teaching machines to paint, write, compose, and play
"Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impr...
Uloženo v:
Hlavní autor: | |
---|---|
Další autoři: | |
Médium: | Kniha |
Jazyk: | angličtina |
Vydáno: |
Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo :
O'Reilly,
2023
|
Žánr/forma: | příručky |
ISBN: | 978-1-098-13418-1 |
Témata: | |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
LEADER | 02903cam a2200421 i 4500 | ||
---|---|---|---|
001 | 001880524 | ||
003 | CZ PrSTK | ||
005 | 20230926090440.0 | ||
008 | 230601s2023 cc a f f 001 0 eng d | ||
020 | |a 978-1-098-13418-1 |q (brožováno) | ||
040 | |a Uk |b cze |c Uk |d Uk |d ABA013 |e rda | ||
044 | |a cc |a xxu |a xxk |a ja | ||
050 | 4 | |a Q325.73 |b .F67 2023 | |
072 | 7 | |a 004.8 |x Umělá inteligence |2 Konspekt |9 23 | |
080 | |a 004.42 |2 MRF | ||
080 | |a 004.8.032.26 |2 MRF | ||
080 | |a 004.85 |2 MRF | ||
080 | |a 004.852 |2 MRF | ||
080 | |a (035) |2 MRF | ||
100 | 1 | |a Foster, David |4 aut | |
245 | 1 | 0 | |a Generative deep learning : |b teaching machines to paint, write, compose, and play / |c David Foster ; foreword by Karl Friston |
250 | |a Second edition | ||
264 | 1 | |a Beijing ; |a Boston ; |a Farnham ; |a Sebastopol ; |a Tokyo : |b O'Reilly, |c 2023 | |
300 | |a xxvi, 426 stran : |b ilustrace ; |c 24 cm | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a bez média |b n |2 rdamedia | ||
338 | |a svazek |b nc |2 rdacarrier | ||
504 | |a Obsahuje bibliografie a rejstřík | ||
520 | |a "Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models, and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos ; Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation ; Create recurrent generative models for text generation and learn how to improve the models using attention ; Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting ; Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN."--Nakladatelská anotace | ||
650 | 0 | 7 | |a programování |x vt |7 psh12467 |2 psh |
650 | 0 | 7 | |a neuronové sítě |x vt |7 psh12333 |2 psh |
650 | 0 | 7 | |a učící se systémy |x vt |7 psh12517 |2 psh |
650 | 0 | 7 | |a hluboké učení |x vt |7 psh14168 |2 psh |
650 | 0 | 7 | |a strojové učení |7 ph126143 |2 czenas |
655 | 7 | |a příručky |7 fd133209 |2 czenas | |
700 | 1 | |a Friston, K. J. |q (Karl J.), |d 1959- |7 mub2015862563 |4 aui | |
910 | |a ABA013 |b A 59558 | ||
996 | |a STK |b 2660518306 |c 1542/2023 |d 20230921 |f 1074.00 |g A 59558 |v Q325 .73 .F67 2023 |l 6.NP, regál 6C/124 |t 03 |0 K |