Principles of big data : preparing, sharing, and analyzing complex information
"Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly...
Uloženo v:
Hlavní autor: | |
---|---|
Korporace: | |
Médium: | E-kniha |
Jazyk: | angličtina |
Vydáno: |
Amsterdam ; Boston ; Heidelberg ; London ; New York ; Oxford ; Paris ; San Diego ; San Francisco ; Singapore ; Sydney ; Tokyo :
Morgan Kaufmann is an imprint of Elsevier,
2013
|
Žánr/forma: | příručky elektronické knihy |
ISBN: | 9780124047242 0124047246 978-0-12-404576-7 0-12-404576-6 |
Témata: | |
On-line přístup: | Plný text Plný text |
Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|
Jiná forma: | Tištěná verze |
LEADER | 04582cam a22005657i 4500 | ||
---|---|---|---|
001 | 001809462 | ||
003 | CZ PrSTK | ||
005 | 20200403094732.0 | ||
006 | m f d | ||
007 | cr nn 008mamaa | ||
008 | 130603t20132013ne ad f b 001 0 eng d | ||
020 | |a 9780124047242 |q (elektronická kniha) |z 0124047246 | ||
020 | |z 978-0-12-404576-7 |q (brožováno) |z 0-12-404576-6 | ||
035 | |a (OCoLC)846495000 |z (OCoLC)852787570 |z (OCoLC)1110220385 |z (OCoLC)1116139342 | ||
040 | |a N$T |b cze |c N$T |d OPELS |d VRC |d E7B |d YDXCP |d TEFOD |d NOC |d OCLCF |d WAU |d UPM |d GGVRL |d WAU |d UAB |d CDX |d DKDLA |d UKDOC |d RIV |d DEBSZ |d OCLCQ |d TEFOD |d OCLCQ |d LOA |d ICA |d AGLDB |d K6U |d PIFAG |d FVL |d ZCU |d MERUC |d OCLCQ |d U3W |d D6H |d UUM |d STF |d WRM |d VTS |d ICG |d INT |d AU@ |d OCLCQ |d WYU |d G3B |d TKN |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d RDF |d ABA013 |e rda | ||
044 | |a ne |a xxu |a gw |a xxk |a fr |a si |a at |a ja | ||
050 | 4 | |a QA76.9.B45 | |
072 | 7 | |a 004.4/.6 |x Programování. Software |2 Konspekt |9 23 | |
080 | |a 004.6-022.257 |2 MRF | ||
080 | |a 004.65 |2 MRF | ||
080 | |a 004.62 |2 MRF | ||
080 | |a 004.658.2 |2 MRF | ||
080 | |a (035) |2 MRF | ||
080 | |a (0.034.2:08) |2 MRF | ||
100 | 1 | |a Berman, Jules J., |d 1950- |7 ntk2013799502 |4 aut | |
245 | 1 | 0 | |a Principles of big data : |b preparing, sharing, and analyzing complex information / |c Jules J. Berman |
264 | 1 | |a Amsterdam ; |a Boston ; |a Heidelberg ; |a London ; |a New York ; |a Oxford ; |a Paris ; |a San Diego ; |a San Francisco ; |a Singapore ; |a Sydney ; |a Tokyo : |b Morgan Kaufmann is an imprint of Elsevier, |c [2013] | |
264 | 4 | |c ©2013 | |
300 | |a 1 online zdroj (xxvi, 261 stran) : |b ilustrace, grafy | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a počítač |b c |2 rdamedia | ||
338 | |a online zdroj |b cr |2 rdacarrier | ||
500 | |a Slovník pojmů | ||
504 | |a Obsahuje bibliografii a rejstřík | ||
505 | 0 | |a 1. Providing structure to unstructured data -- 2. Identification, deidentification, and reidentification -- 3. Ontologies and semantics -- 4. Introspection -- 5. Data integration and software interoperability -- 6. Immutability and immortality -- 7. Measurement -- 8. Simple but powerful big data techniques -- 9. Analysis -- 10. Special considerations in big data analysis -- 11. Stepwise approach to big data analysis -- 12. Failure -- 13. Legalities -- 14. Societal issues -- 15. The future. | |
520 | |a "Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. Learn general methods for specifying Big Data in a way that is understandable to humans and to computers. Avoid the pitfalls in Big Data design and analysis. Understand how to create and use Big Data safely and responsibly with a set of laws, regulations and ethical standards that apply to the acquisition, distribution and integration of Big Data resources"--Provided by publisher | ||
650 | 0 | 7 | |a big data |x if |7 psh14017 |2 psh |
650 | 0 | 7 | |a databázové systémy |x vt |7 psh12531 |2 psh |
650 | 0 | 7 | |a datové sklady |x vt |7 psh12550 |2 psh |
650 | 0 | 7 | |a analýza dat |7 ph301326 |2 czenas |
655 | 7 | |a příručky |7 fd133209 |2 czenas | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
710 | 2 | |a EBSCOhost (online služba) |7 ntk20201068061 |4 dst | |
710 | 2 | |a ScienceDirect (online služba) |7 ntk20191055713 |4 dst | |
776 | 0 | 8 | |i Tištěná verze: |a Berman, Jules J. |t Principles of big data : preparing, sharing, and analyzing complex information |z 978-0-12-404576-7 |
856 | 4 | 0 | |u https://www.sciencedirect.com/science/book/9780124045767 |y Plný text |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=486639 |y Plný text |
910 | |a ABA013 | ||
950 | |a Elsevier |b ScienceDirect 2015 | ||
998 | |a PAR |b 000948605 |l STK01 |m Principles of big data : preparing, sharing, and analyzing complex information / |n Principles of big data : preparing, sharing, and analyzing complex information / |