Small summaries for big data

The massive volume of data generated in modern applications can overwhelm our ability to conveniently transmit, store, and index it. For many scenarios, building a compact summary of a dataset that is vastly smaller enables flexibility and efficiency in a range of queries over the data, in exchange...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Cormode, Graham, 1977- (Autor) 
Další autoři: Yi, Ke, 1979- (Autor)
Korporace: Cambridge University Press (Distributor) 
Médium: E-kniha
Jazyk:angličtina
Vydáno: Cambridge : Cambridge University Press, 2020
Žánr/forma:monografie
elektronické knihy
ISBN:978-1-108-76993-8
978-1-108-47744-4
9781108477444
Témata:
On-line přístup:Plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
Obálka
LEADER 02613cam a22004577i 4500
001 001808193
003 CZ PrSTK
005 20210915081544.0
006 m f d
007 cr nn 008mamaa
008 190314s2020 xxka 001 0 eng d
020 |a 978-1-108-76993-8  |q (elektronická kniha) 
020 |z 978-1-108-47744-4  |q (vázáno) 
040 |a UkCbUP  |b cze  |c UkCbUP  |d ABA013  |e rda 
050 0 0 |a QA76.9.B45 
072 7 |a 004.4/.6  |x Programování. Software  |2 Konspekt  |9 23 
080 |a 004.6-022.257  |2 MRF 
080 |a 004.6.083.723  |2 MRF 
080 |a (048.8)  |2 MRF 
080 |a (0.034.2:08)  |2 MRF 
100 1 |a Cormode, Graham,  |d 1977-  |7 utb2010597878  |4 aut 
245 1 0 |a Small summaries for big data /  |c Graham Cormode, Ke Yi 
250 |a First published 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2020 
300 |a 1 online zdroj (viii, 270 stran) :  |b ilustrace 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
504 |a Obsahuje bibliografii a rejstřík 
520 |a The massive volume of data generated in modern applications can overwhelm our ability to conveniently transmit, store, and index it. For many scenarios, building a compact summary of a dataset that is vastly smaller enables flexibility and efficiency in a range of queries over the data, in exchange for some approximation. This comprehensive introduction to data summarization, aimed at practitioners and students, showcases the algorithms, their behavior, and the mathematical underpinnings of their operation. The coverage starts with simple sums and approximate counts, building to more advanced probabilistic structures such as the Bloom Filter, distinct value summaries, sketches, and quantile summaries. Summaries are described for specific types of data, such as geometric data, graphs, and vectors and matrices. The authors offer detailed descriptions of and pseudocode for key algorithms that have been incorporated in systems from companies such as Google, Apple, Microsoft, Netflix and Twitter. 
650 0 7 |a big data  |x if  |7 psh14017  |2 psh 
650 0 7 |a datové sklady  |x vt  |7 psh12550  |2 psh 
650 0 7 |a datová úložiště  |7 ph922337  |2 czenas 
655 7 |a monografie  |7 fd132842  |2 czenas 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
700 1 |a Yi, Ke,  |d 1979-  |4 aut 
710 2 |a Cambridge University Press  |7 ko2002102052  |4 dst 
776 0 8 |i Tištěná verze:  |t Small summaries for big data  |z 9781108477444 
856 4 0 |u https://doi.org/10.1017/9781108769938  |y Plný text 
910 |a ABA013 
950 |a Cambridge  |b STEM 2021